skorch integration API reference
API reference for the NeptuneLogger class of the Neptune-skorch integration.
You can use a Neptune callback to capture model training metadata when using skorch.
NeptuneLogger
CapturesNeuralNetClassifierhistory and logs the metadata to Neptune.
Parameters
| Name | Type | Default | Description |
|---|---|---|---|
| run | Run | - | An existing run reference, as returned byneptune.init_run(), or anamespace handler. |
| log_on_batch_end | bool, optional | False | Whether to log loss and other metrics on batch level. |
| close_after_train | bool, optional | True | Whether to close the run object once training finishes. Set toFalseif you want to continue logging to the same run or if you use it as a context manager. |
| keys_ignored | stror list ofstr | None | Key or list of keys that shouldnotbe logged to Neptune. Note that in addition to the keys provided by the user, keys such as those starting with"event_"or ending with"_best"are ignored by default. |
| base_namespace | str, optional | "training" | Namespace under which all metadata logged by the Neptune callback will be stored. |
Examples
Create a NeptuneLogger callback:
import neptune
neptune_logger = NeptuneLogger(neptune.init_run(), close_after_train=False)
(Optional)Set the path to the checkpoints directory:
checkpoint_dirname = "./checkpoints"
checkpoint = Checkpoint(dirname=checkpoint_dirname)
Pass the callback to the netcallbacksargument:
net = NeuralNetClassifier(
ClassifierModule,
max_epochs=20,
lr=0.01,
callbacks=[neptune_logger, checkpoint],
)
# Run training
net.fit(X, y)
Log additional metrics after training has finished:
from sklearn.metrics import roc_auc_score
y_pred = net.predict_proba(X)
auc = roc_auc_score(y, y_pred[:, 1])
neptune_logger.run["roc_auc_score"].append(auc)
Log charts, such as an ROC curve:
from scikitplot.metrics import plot_roc
import matplotlib.pyplot as plt
from neptune.types import File
fig, ax = plt.subplots(figsize=(16, 12))
plot_roc(y, y_pred, ax=ax)
neptune_logger.run["roc_curve"].upload(File.as_html(fig))
Log the net object after training:
net.save_params(f_params="basic_model.pkl")
neptune_logger.run["basic_model"].upload("basic_model.pkl")
Close the run if needed
If you setclose_after_train=False, close the run when done:
neptune_logger.run.stop()
See also
NeptuneLoggerin theskorch API reference
This page is originally sourced from the legacy docs.