Catalyst integration API reference
API reference for the Neptune-Catalyst integration.
You can use the CatalystNeptuneLoggerclass to capture model training metadata.
NeptuneLogger
Neptune logger for parameters, metrics, images and artifacts (such as videos, audio, and model checkpoints).
Parameters
| Name | Type | Default | Description |
|---|---|---|---|
| base_namespace | str, optional | experiment | Namespace under which all metadata logged by the Neptune logger will be stored. |
| api_token | str, optional | None | User's API token. If None, the value of theNEPTUNE_API_TOKENenvironment variable is used.To keep your token secure, avoid placing it in the source code. Instead,save it as an environment variable. |
| project | str, optional | None | Name of a project in the formworkspace-name/project-name. If None, the value of theNEPTUNE_PROJECTenvironment variable is used. |
| run | Run, optional | None | An existing run reference, as returned byneptune.init_run(). |
| log_batch_metrics | boolean, optional | SETTINGS.log_batch_metricsorFalse | Boolean flag to log batch metrics. |
| log_epoch_metrics | boolean, optional | SETTINGS.log_epoch_metricsorTrue | Boolean flag to log epoch metrics. |
| **neptune_run_kwargs | str, optional | - | Additional keyword arguments to be passed directly to theinit_run()function, such asdescriptionandtags. If therunparameter is set toNone,NeptuneLoggerwill create aRunobject for you. |
To keep your token secure, avoid placing it in the source code. Instead,save it as an environment variable.
Examples
Add NeptuneLogger through thetrain()function:
from catalyst import dl
runner = dl.SupervisedRunner()
runner.train(
...
loggers={
"neptune": dl.NeptuneLogger(
project="workspace-name/project-name", # (1)!
tags=["pretraining", "retina"], # kwargs for neptune.init_run()
)
}
)
- The full project name. For example,"ml-team/classification".
- You can copy the name from the project details ( → Details & privacy )
- You can also find a pre-filled
projectstring in Experiments → Create a new run .
The full project name. For example,"ml-team/classification".
Add NeptuneLogger from within custom runner implementation:
from catalyst import dl
class CustomRunner(dl.IRunner):
# ...
def get_loggers(self):
return {
"console": dl.ConsoleLogger(),
"neptune": dl.NeptuneLogger(project="workspace-name/project-name"),
}
# ...
runner = CustomRunner().run()
You can also add the Neptune logger through Config API and Hydra API:
# Config API
loggers:
neptune:
_target_: NeptuneLogger
project: workspace-name/project-name
...
# Hydra API
loggers:
neptune:
_target_: catalyst.dl.NeptuneLogger
project: workspace-name/project-name
base_namespace: catalyst
...
See also
- NeptuneLogger reference in the Catalyst API docs
This page is originally sourced from the legacy docs.